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Abstract
Graph Isomorphism has become a foundational problem to computational complexity and has led to many

developments in computer vision and machine learning. However, the worst-case deterministic complexity of
this isomorphism problem is not well understood. In order to provide a path for improvement we develop a

class called the TI-complete problems and discuss how they impact the complexity of Graph Isomorphism. We
attempt to solve many long standing open questions in mathematics and theoretical computer science and
push the bounds of the status quo. We discuss new techniques and methodolgies which have had success in
improving the complexity of isomorphism problems and the current status quo of isomorphism testing. In
doing this we hope to further develop the field of quantum computing, computational group theory and

machine learning.
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1 Introduction
Isomorphism Testing of Algebraic and Combinatorial Structures asks to decide whether two objects are iso-
morphic. Understanding the complexity is to try and improve the worst-case asymtoptic time-complexity on a
deterministic turing machine. An isomorphism (∼=) is an equivalence relation that is less strict than an equal-
ity. This is important to all fields of mathematics and science since very rarely real world objects are strictly
equivalent (for example trying to match objects given by a image representation, or match molecules given their
graphs).

The Isomorphism Testing Problem for algebras and combinatorial structures is a widely studied problem in
theoretical computer science [GQ23b; GQ21; GQ23a]. It has a variety of applications in quantum information,
post-quantum cryptography and machine learning, with the most widely studied problem being that of Graph
Isomorphism.

Isomorphism problems are studied heavily in the field of computational complexity. Graph Isomorphism
was one of the first problems described in Karp’s seminal paper describing the 21 NP-complete problem [Kar72].
In which Karp listed Graph Isomorphism as an open question whether Graph Isomorphism is in P or is NP-
complete. Graph Isomorphism is the most studied Isomorphism Problem, however only recently graph isomor-
phism was shown to be quasi-polynomial time [Bab16]. While theoretically graph isomorphism seems like a
difficult problem, in practice it is quite easy, for example Babai, Erdos and Selkow showed Graph Isomorphism
has a linear time average case running time [BES80]. Graph Isomorphism is seen as effectively solved in practice,
see [McK81; MP14].

Graph Isomorphism is important as many objects can be generalised as graphs, however showing that graph
isomorphism can be solved efficiently for all graphs (this is equivalent to showing graph isomorphism is in P).
It is thought by experts in the field that we first need to improve group isomorphism [Bab16].

Compared to Graph Isomorphism Problem, the isomorphism problems for general algebraic structures such
as tensors, and polynomials are much more difficult to solve. Like Graph Isomorphism they also exhibit the
property that it is unknown whether they are in P or are NP-complete. Compared to Graph Isomorphism
which took many years to develop a quasi-polynomial time algorithm. The Group Isomorphism Problem is an
interesting case. It has been quasi-polynomial time bounded since its initial investigation, with time NO(logN)

where N denotes the group order, originally attributed to Tarjan, [Mil78]. With the best known improvement
not improving Group Isomorphism testing to even No(logN), [Ros13]. The group isomorphism problem asks
to decide whether two finite groups given by their cayley tables are isomorphic. This is at least as hard as
graph isomorphism since group isomorphism can be cast as a graph isomorphism problem, [KST93]. However,
there has been relatively little progress in improving the worst-case bound for Group Isomorphism compared to
Graph Isomorphism.

A particularly interesting and hard case of group isomorphism testing is the isomorphism testing problem of
p-groups of (nilpotent) class 2 and exponent p. Historically this class proved difficult to show an improvement
over the current status quo of group isomorphism with running time NO(logN), until Sun showed p-groups of
class 2 and exponent p could be tested in time No(logN), [Sun23].

1.1 The Practical Applications of Isomorphism Testing
The isomorphism testing of algebraic structures, specifically of polynomials, tensors and groups has been widely
studied for applications in machine learning, quantum information, and post-quantum cryptography.

Computational Group Theory is a branch of applied mathematics concerned with developing efficient algo-
rithms relating to group theory, see ([O’B94]). A notoriously difficult case of groups for computation is p-groups
of class 2 and exponent p. Currently little improvement has been made over the previous results however the
representation of p-groups as linear spaces of matrices presents new avenues to explore within computational
group theory, [LQ17].

In Post-Quantum Cryptography, Graph Isomorphism had been explored as a potential avenue as a protocol
for zero-knowledge proofs, see [GMW91]. However due to Graph Isomorphism being easily solvable in practice
[BES80], Graph Isomorphism did not provide a solid foundation as a Cryptography Scheme. In contrast with
Graph Isomorphism, the Tensor Isomorphism Problem seems much more difficult, difficult enough practically
to yield a plausible cryptography scheme, see [Tan+22].

In Quantum Information an important question asking if two quantum states are interconvertible by SLOCC
(local operation and classical communication statistically). This can be cast as a tensor isomorphism testing
problem, [DVC00; Ben+01].

Within Data Science and Machine Learning in feature extraction a method would be to utilise a signature
tensor and reconstruct the path of the tensor, see [Che57]. This can be seen as a tensor congruence problem,
see [PSS19].
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2 Literature Review
The isomorphism testing problem for algebraic structures given by a group acting on a set are closely related
problems which can be described by what the underlying set is. A group acting on combinatorial structures
(graphs) have been heavily explored and researched. Trivially yielding the successful Weisfeiler-Leman algorithm
and colour refinement [BES80]. However it is also important to consider a group acting on a linear structure.
Finite groups can be represented as matrix spaces and lie algebras, and polynomials can also trivially be
represented as (multi)linear structures. This is the main motivation of the complexity class TI.

2.1 Preliminary Definitions and Notation
First we describe some basic definitions and notation.

Sylow p-groups and Nilpotent Groups. A commutator of a group G is defined as [a, b] = a−1b−1ab, if A,B
are subgroups of G than the commutator subgroup is defined as [A,B] is the group generated by [a, b] where
a ∈ A, b ∈ B. The lower central series of a group G is defined as γ1 = G, γk+1(G) = [γk(G), G]. A group is
defined to be nilpotent if there is a c such that γc+1(G) = 1. So c denotes the class of the group. A classic
result in finite group theory is that for a finite group, the group is nilpotent if and only if it is the product of
it’s Sylow subgroups. So the groups of prime power order pr are nilpotent.

Linear spaces. Fq denotes a finite field of order q. Sometimes written as Fp depending on the context. The
corresponding linear space of dimension n over the field is denoted as Fn

q .
Matrices and Matrix spaces. The space of n×n matrices over the field Fq is denoted M(n,Fq) and the space

of n×m matrices over Fq is similarly denoted M(n×m,Fq). Given a matrix A ∈ M(n×m,Fq), the transpose
of A is denoted A⊤. A matrix A ∈ M(n×m,Fq) is said to be symmetric if A = A⊤ and skew-symmetric or
alternating if A = −A⊤. The space of alternating matrices is denoted Λ(n,Fp).

Linear Groups. GL(n,Fq) denotes the general linear group or the set of n×n invertible matrices over the
field Fq.

Font Object Corresponding space
A,B, . . . matrix M(n,Fq) or M(n×m,Fq)
A,B, . . . matrix spaces The subspaces of M(n,Fq) or M(n×m,Fq)
A,B, . . . matrix spaces The subspaces of M(n,Fq) or M(n×m,Fq) corresponding to a tensor slice
A, B, . . . tensors T (n×m×l,Fq)

Description of notation and corresponding objects.

Here we give a general definition, that extends to all (algebraic & combinatorial) structures.

Definition 2.1. The Isomorphism Testing Decision Problem for Algebraic Structures can be generalised as
Given a group G acting on a set X, decide if two set elements x, y ∈ X are in the same G-orbit.

An important distinction between the isomorphism testing of graphs and the isomorphism testing of algebraic
structures. In the testing of graphs the underlying set that the group acts on is a combinatorial structure
(implying the use of combinatorial techniques to solve graph isomorphism). While the group acting on an
algebra is generally linear, and the underlying set being a (multi)-linear structure (implying the use of linear
algebraic techniques).

Tensors can be understood as multidimensional arrays, and 3-Tensors which denote 3-dimensional arrays
can be understood as matrix spaces when slicing them. This leads to important definitions of actions on matrix
spaces.

Definition 2.2. Two matrix spaces A,B ⊆ M(n×m,Fp) are said to be equivalent if (and only if) there exists
matrices P ∈ GL(m,Fp) and Q ∈ GL(n,Fp) such that PAQ = B, and PAQ denotes the space {PAQ | A ∈ A}.
Similarly two matrix spaces A,B ⊆ M(n,Fp) are said to be conjugate if there exists a P ∈ GL(n,Fp) such that
PAP−1 = B. Finally the matrix spaces are said to be isometric if and only if PAP⊤ = B.

2.2 Tensor Isomorphism and Tensor Isomorphism Completeness
Given that algebraic isomorphism problems seem harder to improve at least in literature compared to that of
graph isomorphism, it is important to understand the theoretical complexity of algebraic isomorphism problems.
Algebraic Isomorphism Problems can trivially be understood in the complexity class GI which is explored by
Kobler in his book on Graph Isomorphism Complexity ([KST93]). However, this approach has limitations since
while Graph Isomorphism is easy in practice, algebraic isomorphism problems are thought to be intractable
([GQ23a]). It is unknown whether algebraic isomorphism problems are P or NP-complete either so the usual
framework for dealing with intractability is not very useful. That is to say, we need to come up with a way
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of understanding the complexity of algebraic isomorphism problems that properly encapsulates the difficulty of
them.

This is the primary motivation for the development of the complexity class TI and the definition of TI-
complete which is the hardest problems in TI.

Recall definition 2.1. This can be extended to the d-Tensor Isomorphism Problem where the general linear
group acts on the sides of the tensor.
Definition 2.3. For vector spaces Vi ∈ Fni

q over a field Fq. A d-Tensor T = V1 ⊗ V2 ⊗ . . . ⊗ Vd and S = U1 ⊗
U2⊗ . . .⊗Ud. The d-Tensor Isomorphism Problem asks to decide whether there exists matrices Ai ∈ GL(ni,Fq)
such that for a tensor T, Ai acting on Vi produces S. Trivially the 3-Tensor Isomorphism Problem is equivalent
with three vector spaces U, V,W and the tensors U ⊗ V ⊗W .

This leads us to the related notion of the complexity class TI and TI-completeness. Like graph isomorphism,
the class TI gives a notion of which problems exhibit similar properties, such as being somewhere between NP-
complete and P. Showing that a variety of problems were in TI including isomorphism for algebras over a finite
field was a classic result, see [FGS19]. However, showing that problems in TI exhibit the same property of
intractability required introducing the notion of TI-complete problems, this is the major result of Grochow and
Qiao [GQ23a].
Definition 2.4 ([GQ23a]). TI or TIFq is the class of problems polynomial-time turing (Cook) reducible to
the d-tensor isomorphism problem for a fixed d over a field Fq. A problem is said to be TI-hard iff for any
d, d-Tensor Isomorphism reduces to the problem in polynomial time (turing). Finally a problem is said to be
TI-complete iff it is both TI-hard and in TI. Note that TI-completeness denotes the hardest problems in TI.

The significance of this cannot be understated. Showing that problems are TI-complete is fundamental
to understanding the complexity of problems such as group isomorphism (for which the hardest cases are TI-
complete) and as evidence for showing that Graph Isomorphism is in P. That is to say if we show any problem
that is TI-complete can be solved efficiently, we improve the bounds for all TI-complete problems, the problem
of p-groups is specifically of interest due to Babai [Bab16] describing them as a roadblock to showing GI is in
P. This leads to an important theorem in the testing of algebraic isomorphism problems.
Theorem 1 ([GQ23a]). The following problems are TI-complete.

1. 3-Tensor Isomorphism (over a field Fq)

2. Group Isomorphism for the case of p-groups of (nilpotent) class 2 (reduces to TIFpc for the special case
of tensors over the field Fpc).

3. Matrix Space Isometry

4. Matrix Space Conjugacy

5. Algebra Isomorphism including the cases:

(a) Associative Algebra Isomorphism for algebras that commutative and unital, or for algebras that
are commutative and 3-nilpotent.

(b) Lie Algebra Isomorphism for 2-step nilpotent Lie Algebras

6. Cubic Form Equivalence and Trilinear Form Equivalence.

2.3 Isomorphism Testing for p-Groups of Class 2 and Exponent p

Graph Isomorphism has been incredibly important to the field of machine learning [zotero-62]. Interestingly,
while Graph Isomorphism is not known to be in P, Graph Isomorphism is efficiently solvable in practice due to
the successful weisfeiler-leman and colour refinement techniques, see [CFI92]. In fact this algorithm forms the
basis of graph neural networks and is shown to be as powerful as graph isomorphism networks, see [Xu+19].

Tensors and linear structures are much easier for a computer to represent however, it has long been known
that it is much more difficult to efficiently compute TI-complete problems (specifically that of p-groups class 2
exponent p) in practice. Colour refinement and weisfeiler-leman (colour refinement is a special case of weisfeiler-
leman) have been successful in the average case analysis of graph isomorphism, see [BES80]. This leads to the
question of applying a refinement technique in the context of linear group actions. This lead to the linear
analogues as a technique for the average case complexity analysis of tensor isomorphism, see [LQ17; Bro+19].

However in the context of worst-case analysis it is important to understand the complexity of p-group of
class 2 exponent p isomorphism since as per the introduction it is the most well-known TI-complete problem
in literature. Importantly p-group of class 2 exponent p under Baer’s correspondence can be represented as
alternating matrix spaces, and again represented as a 3-tensor by combining the matrix spaces to form 3-
dimensional arrays.
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Lemma 2.1 ([Bae38]). Let G,H be two p-groups of class 2 and exponent p, with group order pc. There is
a bijection between G and H and corresponding alternating bilinear maps G/Z(G) × G/Z(G) → [G,G] where
Z(G) denotes the center of the group. Since bilinear maps can be represented as alternating matrix spaces
G,H ⊆ Λ(n,Fp). The isomorphism problem for p-groups of class 2 exponent p is equivalent to the matrix space
isometry problem over the field Fp. Which is decide if there exists a matrix P ∈ GL(n,Fp) such that PAP⊤ = B.

Now we can ask what is the worst case complexity of p-groups of class 2 exponent p given a brute force
algorithm.

Lemma 2.2. There exists a brute-force algorithm for testing p-groups of class 2 and exponent p in time NO(logN)

where N = pc denotes the group order.

Proof. Consider the algorithm.

Algorithm 1 Brute-Force Algorithm for p-group of class 2 exponent p
.

Input
A A matrix spaces in Λ(n,Fp) which is a representations of p-groups of class 2 exponent p
B A matrix spaces in Λ(n,Fp) which is a representations of p-groups of class 2 exponent p

Output
YES Is isomorphic
NO Not isomorphic
Algorithm

1. For each matrix in P ∈ GL(n,Fp), if PAP⊤ = B, return YES.
2. Return NO.

Since their are pn
2 possible entries for a matrix in M(n,Fp) the running time of Alg 1. ≤ pn

2 ·poly(n, log p).
So clearly the algorithm is in time NO(logN). ■

The point of this shows that even a naive brute force algorithm is quasi-polynomial time bounded. As
described before, linear analogues to colour refinement and weisfeiler-leman have been successful in average case
analysis of this problem [LQ17; Bro+19]. Inspired by this Sun introduces two techniques inspired by colour
refinement approaches called matrix space indvidualisation refinement and low-rank matrix characterisation,
[Sun23]. In matrix space individualisation refinement, Sun presents a proof that we can find a left and right
multiplication matrix with a resulting image of matrices of smaller size, such that given a suitably high rank,
they produce a non-zero matrix. However, while the left and right matrices are small enough to enumerate with
little cost to the algorithm runtime, it does not deal with small rank matrices. Based on the work of Flanders,
Atkinson and Lloyd, Sun introduces a method called low rank matrix characterisation for producing smaller
matrices from low rank matrices [Fla62; AL81].

Theorem 2 ([Sun23]). Let A and B be two n×n skew-symmetric matrix spaces, both of dimension m, over
Fp for some prime number p > 2 and positive m,n. There is an algorithm with running time pO((n+m)1.8·log p),
which determines whether there exists a matrix S ∈ GL(n,Fp) such that SAS⊤ = B.

This presents the secondary result from Sun which shows that skew-symmetric matrix space isometry testing
can be improved upon.

Theorem 3 ([Sun23]). Let G and H be two p-groups of class 2 exponent p for an odd prime power p (where
the group order is pc), there is an algorithm with running time NO((logN)5/6) to determine whether G and H
are isomorphic, where N denotes the group order.

This is Sun’s main result, it shows clearly that p-groups of class 2 and exponent p are testable in time
No(logN). Using new techniques he improves a long standing bound in isomorphism testing.

2.4 Future Work and Review
We have new tools for testing matrix space isometry. However, there is still an important class of p-groups
which Sun explicitly did not test for, that of 2-groups. Additionally, whether his lower bounds are optimal is
still a open question to experts. It is currently under investigation whether his bounds can be improved.

The big question also remains about what his breakthrough means for all TI-complete problems. That is
a question first answered by Grochow and Qiao in their recent paper [GQ23a]. However, given the potential
improvements of the bounds of p-group isomorphism, very soon the bounds of all TI-complete problem may
once again require investigation.
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3 Conclusion
The important problem of the isomorphism testing of TI-complete problems has the potential to revolutionalise
many industries. As described it could potentially introduce new powerful techniques of machine learning
[Xu+19].

Recently the cryptography scheme based on alternating trilinear form equivalence was proposed as a NIST
submission for the post-quantum cryptography standardisation process (ALTEQ), see appendix ALTEQ. Un-
derstanding the computational complexity of the TI-complete problems is fundamentally important to the
success of the submission.

In conclusion the TI-complete problems are still not well understood, there is still much discovery to be
made about how much they can be improved. Understanding the complexity of such problems can lead to new
techniques and improvement to long standing questions in mathematics that have formed the foundation of
techniques prevalent to those in machine learning. As quantum computing and machine learning become ever
prevalent in industry understanding how complex these problems are become ever important to pushing the
bounds of the future of computing.
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A Appendix
A.1 ALTEQ
https://pqcalteq.github.io/
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