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1 Executive Summary
Algebraic Isomorphism Testing asks whether two objects in their respective categories are structurally equiva-
lent. Isomorphism Testing is vital because we often treat structural equivalence as natural equivalence instead
of the mathematical definition, which does not consider equality equivalent to isomorphism unless we take
univalence as our foundation of mathematics.

This inherent relation between equality and isomorphism is foundational in the real world. In Computational
Group Theory, this question may interest those asking whether two molecules share the exact symmetry. In
quantum information and quantum cryptography, this is a fundamentally important question.

Historically speaking, the question of finding an efficient algorithm for isomorphism testing of p-groups
of class 2 and exponent p has been a widely studied problem as one of the most challenging cases of group
isomorphism. Xiaorui Sun showed isomorphism could be tested in time No(logN) where N denotes the group
order, which is a prime power pk. Additionally, there is a representation of p-groups of class 2 and exponent
p under Baer's correspondence to Alternating Matrix Spaces, as well as Alternating Matrix Spaces being a
fundamental TI-complete problem.

These relationships allow for a new project investigating potential improvements synthesised based on these
classical results. This project proposes developing a new algorithm for testing p-groups of class 2 and exponent
p and using this algorithm to improve the general status quo of the TI-complete problems. At a high level,
this is achievable by improving the two new techniques developed by Sun in his seminal paper. We additionally
should hopefully be able to prove this result holds for the class of even p-groups of class 2 exponent p as well
as being able to extend our results to the other TI-complete problems in the same vein that Grochow and Qiao
have successfully managed to do in the recent past.
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2 Introduction
This report proposes a new improvement to Algebraic and Combinatorial Isomorphism Testing. Isomorphism
Testing asks whether two structures in their respective (mathematical) categories are essentially and structurally
equivalent. In practice, we find that very few structures are mathematically equal. Working with objects with
the same structure but not necessarily the same composition of elements is more straightforward in practice.

Abstractly dealing only with the structure of objects is far easier than dealing with strictly equal objects.
However, finding out if two structures are equivalent is much more difficult. The project's primary goal is to
uncover the algorithmic complexity of the problem for the case of p-groups of (nilpotent) class 2 and exponent
p. We also want to know how improvements can propagate to related problems.

Historically, Graph Isomorphism has presented itself as the most widely studied isomorphism testing prob-
lem. Graph Isomorphism was one of the first open questions in the development of computer science, pointedly
with the question asking whether Graph Isomorphism is P or NP-complete [Kar72]. However, while Graph
Isomorphism is a rich field of research, the isomorphism testing of other algebraic structures is a relatively
prosperous and unexplored area presenting exciting gaps in the current knowledge of computational complexity
and theoretical computer science.

The new development of an algorithm for testing p-groups of class 2 and exponent p in time NO((log n)5/6)

by Xiaorui Sun [Sun23] presents an opportunity to improve the current best known worst-case bounds of all the
TI-complete isomorphism problems [GQ23a].

2.1 Isomorphism Testing Uses in Industry
Isomorphism Testing has many valuable applications, specifically in Post-Quantum Cryptography and Quantum
Information. The leading group primarily interested in the complexity of isomorphism testing is the UTS QSI
Centre of Quantum Science and Information under grant LP220100332 and NIST ((American) National Institute
of Standards and Technology).

In Post-Quantum Cryptography, Isomorphism Testing is used as a theoretical basis for ALTEQ, which is a
current candidate for a post-quantum cryptography scheme based on the trilinear forms equivalence problem,
which is a TI-complete problem [Tan+22].

Isomorphism Testing is also essential to Quantum Information, Machine Learning and Computational Group
Theory. The applications are described in detail later on in the report.

2.2 Preliminary Definitions
The following notation and definitions are essential to the content of the report. The following definitions can
be found in the reference text [Sip12].

This report distinguishes the notion of an algorithm from the definition typically (mis)-used in literature. We
can informally define an algorithm as a set of instructions on a Turing-complete system that always terminates
on the correct solution. When we move over to the world of heuristics and practical algorithms, we give up on a
proof of correctness or a guarantee of termination. Heuristics are usually distinguishable in literature since they
utilise benchmarks and real-world performance as a metric, where here, we analyse algorithms by counting the
maximum number of steps until they terminate. Here, we distinctly distinguish algorithms that yield worst-case
analysis as our classical algorithms and practical and AI algorithms as our heuristics.

In computational complexity, we classify algorithms based on their respective worst-case running times in
time complexity and worst-case space usage in space complexity. Classically, we can take P as the class of
algorithms that terminate after a polynomial number of steps on a deterministic Turing machine. We can also
understand NP as the class of algorithms that terminate in a polynomial amount of steps in a non-deterministic
Turing machine. The notion of NP-complete is also vaguely useful in the isomorphism testing problem. NP-
complete defines the class of (decision) problems such that for a given problem if it is in NP and every problem
in NP is polynomial time (Karp) reducible to that problem, it is said to be NP-complete.

A reduction from a problem A to a problem B means that we write an algorithm that takes the inputs of
A and modifies them to be the inputs of B. If A is reducible to B, then we can use B to solve A by changing
the inputs to B and using an algorithm that solves B to solve A. In a sense, the principle of reductions is
why it is not a broad problem to test all TI-complete problems due to the property that if we solve a single
TI-complete problem, we can solve the rest in the complexity class by using the algorithm obtained to solve the
single instance.

For the case of this paper, we refer to Algebraic Isomorphism Testing as the testing of TI-complete structures
where TI-completeness refers to the complexity class defined by Grochow and Qiao [GQ23a].
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2.3 Overview of the Report Structure
The report presents the goals of the proposed project first, introducing the project aims and objectives. The
report presents a brief yet detailed overview of the history of the algebraic isomorphism testing problem. Which
we can use to describe, based on the status quo, how significant the research is and what are the potential
implications of completing the project. We finally provide an overview of the methodology used to accomplish
our objectives.

3 Research Aims & Objectives
At a high level, this research aims to improve the current state-of-the-art complexity of algebraic and combina-
torial isomorphism testing problems. Improving the current state of the art can be done by accomplishing the
following tasks.

In the project, a significant component is correctly understanding and improving upon Sun's algorithm for
p-group of class 2 exponent p [Sun23]. That is to develop a faster algorithm yielding worst-case analysis for
isomorphism testing of p-groups of class 2 and exponent p.

In the case that we develop a new algorithm for p groups of class 2 exponent p, we know that there is a
reduction from p-groups of class 2 exponent p to all other TI-complete isomorphism problems[GQ23a; GQ23b].
As such, it is vital to know how the result potentially improves and extends to the TI-complete problems,
including 3-Tensor Isomorphism, Alternating Matrix Space Isometry and the testing of classes of Lie Algebras.

In his paper on p-groups of class 2 exponent p, Sun introduces two new techniques for isomorphism testing
of (multi) linear structures, specifically the techniques of high-rank matrix space individualisation refinement
and low-rank matrix characterisation. Another project goal is to apply these techniques to many other related
problems. Notably, these techniques are related to alternating matrix space isometry testing more closely than
to p-group of class 2 exponent p isomorphism testing. Similar techniques may apply to matrix space isometry
problems broader than alternating matrix spaces.

Another significant objective of this project is to develop the so-called linear algebraic analogues of the
Weisfeiler-Leman technique. In the research background section, the report describes how the technique has
been used to powerfully compute isomorphisms on combinatorial structures. However, so far, linear algebraic
models have succeeded in the average case, but there are gaps in literature for the development or contribution
of analogues in the worst-case complexity.

4 Background
4.1 Graph Isomorphism and the Relationship to Algebraic Isomorphism Testing
In the initial investigation of the classic problem P vs NP, Karp asked whether Graph Isomorphism was in P
or NP-complete in 1972 [Kar72]. Since then, there has been rapid development in the isomorphism testing of
Graphs. The impressive results in graph isomorphism can be directly attributed to the success of the naive
colour refinement technique [BBG17; CC82]. The k-dimensional Weisfeiler-Leman Algorithm generalised the
results from the Colour Refinement technique and has proved to be an incredibly powerful foundation for Graph
Isomorphism Testing [WL68; CFI92].

Figure 1: Naive Colour Refinement

The Weisfeiler-Leman Algorithm is a powerful technique that appears in some form in every practical and
average case algorithm for Graph Isomorphism. Most notably, graph isomorphism was shown to be linear time-
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bounded in the average case [BES80]. Graph Isomorphism was also shown to be efficient in practice [McK81;
MP14].

These results all gave strong evidence that Graph Isomorphism is likely in the complexity class P instead of
NP-complete, which are the hardest problems in NP. It is known that Graph Isomorphism (and group isomor-
phism) lie somewhere in the complexity class NP ∩ co-AM. It is also a classic result that Graph Isomorphism
being NP-complete implies the collapse of the polynomial-time hierarchy to the second level [Sch88].

Using a different group-theoretic formulation of the Graph Isomorphism Problem, Babai, in a landmark
breakthrough, showed that Graph Isomorphism was quasipolynomial time-bounded [Bab16]. In his seminal
paper, Babai posed the question of how hard is Graph Isomorphism. In his paper, he referenced Group Isomor-
phism as a potential roadblock to putting Graph Isomorphism in the Complexity Class P. Babai also specifically
noted that p-groups of class 2 and exponent p seemed to be a particularly hard case of graph isomorphism.

Grochow and Qiao also noted in the seminal paper on Tensor Isomorphism completeness that Tensor Iso-
morphism is a roadblock to p-group isomorphism of class 2 exponent p groups [GQ23a].

4.2 Algebraic Isomorphism in Connection to TI-complete problems
While Graph Isomorphism forms an interesting problem, it has effectively hit a roadblock. Graph Isomorphism
is seen as a problem that is effectively solved even though the question is Graph Isomorphism in P is still an
open question. However, the algebraic isomorphism testing of other algebraic structures are in their own right,
fascinating problems.

While Graph Isomorphism and the Isomorphism Testing of algebraic structures are fundamentally inter-
twined, historically, they have followed very different paths through literature. It should be noted that Graph
Isomorphism was studied for roughly 50 years before the quasipolynomial time breakthrough. Even still, the
quasipolynomial time breakthrough was irrespective of the fact that very early on, Graph Isomorphism had a
practically efficient algorithm.

When compared to the history of Group Isomorphism, Group isomorphism was known very early on to have
a worst-case time bound of NO(logN) where N denotes the group order, which was initially attributed to Tarjan
[Mil78]. In 40 years, the best-known algorithm for group isomorphism cannot improve this result even to the
marginal improvement of No(logN) [Ros13]. In particular, an especially hard case of the Isomorphism Problem
for Groups was the case of p-groups of class 2 exponent p.

The development of the complexity class TI and the notion of TI-complete with a definition mirroring the NP-
complete complexity class by Grochow and Qiao provided a solid foundation to study this inherent difficulty
[GQ23a]. Importantly noting the shift from making improvements to understanding what makes Algebraic
Isomorphism Testing hard. Notably, TI closely resembles work done by Cook and Levin in the seminal result of
proving SAT is NP-complete and the corollary that 3-SAT is NP-complete. With the counterparts that Tensor
Isomorphism is TI-complete, and 3-Tensor Isomorphism is TI-complete.

Isomorphism Testing can be viewed as a problem of given two elements of a set X and a group acting on
the set G, decide if the two elements are in the same G-orbit. Under this framework, we can view Graph
Isomorphism Testing as asking, given the set of graphs given by their adjacency lists, are two graphs in the
same orbit of the permutation group acting on the graph. The seemingly much more difficult instance of this
problem is asking whether tensors given by three linear basis and the general linear group acting on each basis
are two tensors in the same orbit.

Figure 2: Pictoral View of Group Actions on a Tensor

Tensors can be constructed from Alternating Matrix Spaces, which are linear representations of p-groups
of class 2 exponent p given by Baers Correspondence [Bae38]. Some breakthroughs were made in algebraic
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isomorphism testing using Baer's correspondence and linear representations. Notably, based on the success of
the Weisfeiler-Leman algorithm, efficient average case linear analogues were developed[LQ17; Bro+19].

Using ideas taken from utilising linear analogues of the Weisfeiler-Leman algorithm, the first significant
breakthrough in p-groups class 2 exponent p testing was made by Xiaorui Sun by introducing two new tech-
niques for dealing with the aforementioned Alternating Matrix Space Isometry Problem, namely high-rank
individualisation refinement and low-rank matrix characterisation [Sun23]. With low-rank matrix characterisa-
tion being developed from the work of Flanders [Fla62]. Using these new techniques, Grochow and Qiao showed
that his results extended to all the other TI-complete problems [GQ23b].

5 Research Significance & Innovation
5.1 Significance of the Research
As per the history of the algebraic isomorphism testing problem, there are two avenues to explore when under-
standing the significance of algebraic isomorphism testing.

From the perspective of Graph Isomorphism, algebraic isomorphism testing is significant due to the properties
exhibited by the Graph Isomorphism Problem. Whether Graph Isomorphism is in P has been an open question
since the inception of Computer Science and Computational Complexity, with the results showing that Graph
Isomorphism is an easy problem in both the practical case and the average case [BES80; McK81], it is surprising
that showing Graph Isomorphism is in P has been such a difficult task. This is evidence that there is a
particularly hard case of Graph Isomorphism.

Since Graph Isomorphism is known to be easy in practice, more work has been done to understand what
makes finding an efficient algorithm in the worst-case for Graph Isomorphism so tricky. An investigation
into Graph Isomorphism with parameterised complexity has been done to investigate which specific instances
of Graph Isomorphism are difficult. Specifically, Graph Isomorphism has parameterised algorithms bounded
by Treewidth, Graph Minors, Graph Euler Genus and maximum degree [GN21; GNW23]. However, it is
essential to note the dichotomy of practically efficient algorithms using combinatorial techniques to solve Graph
Isomorphism, while the best-known worst-case solutions utilise techniques from Group Theory.

It is believed that there must be a particularly hard case of Graph Isomorphism, which forms a roadblock
to placing Graph Isomorphism in P. The connection between Graph Isomorphism and Group Theory, especially
within efficient worst-case methods of solving Graph Isomorphism has long been thought to be a clue in this
apparent difficulty. Here, Group Isomorphism is classically reducible to Graph Isomorphism [KST93]. However,
the significant lack of development in the group isomorphism problem, especially the case of p-groups of class 2
and exponent p is the predominant reason that experts believe 'Graph Isomorphism cannot be solved until we
solve Group Isomorphism' [Bab16].

As a side note, another perspective on why Algebraic Isomorphism Problems are so attractive compared to
the Graph Isomorphism Problem is that Graph Isomorphism forms a zero-knowledge proof protocol [GMW91].
However, since Graph Isomorphism is easy to calculate in practice, it is a fundamentally insecure protocol.
However, the algebraic isomorphism problems tend to be much harder to calculate. As such, understanding
the complexity of algebraic isomorphism testing is essential to establish how effective a cryptographic protocol
based on algebraic isomorphism testing is [Tan+22].

From the perspective of Algebraic Isomorphism Testing as a stand-alone problem. (Nilpotent) p-groups
of class 2 exponent p have long stood as a hard case of the group isomorphism problem. Sun's algorithm
is a significant breakthrough as it opens a 40-year-long block in the development of algorithms for Group
Isomorphism [Sun23]. We now have new techniques at our disposal that have the potential to improve further
isomorphism testing algorithms for all of the known TI-complete algorithms. Work has been done to show that
Sun's result extends to the other TI-complete problems [GQ23b]. However, there is room for improvement in
developing new and more efficient algorithms than the last.

5.2 Potential Benefits of Understanding the Complexity of Isomorphism Testing
Isomorphism testing has numerous practical applications, all in need of faster algorithms. Complexity gives a
sense of what particular aspects of a problem are hard and may allow further development in various fields.

Understanding the Complexity of TI-complete problems is now more critical than ever. It is becoming
increasingly common knowledge that Shor's algorithm and Quantum Computing potentially threaten infor-
mation security [AA23]. However, the current NIST call for Post Quantum Cryptography Schemes all rely
on lattice-based cryptography standards. This means lattice-based schemes could potentially suffer the same
fate as factorisation-based algorithms, which are weak to Shor's algorithm. Essentially, we need to diversify the
landscape of cryptographic protocols in order to ensure security. A cryptographic protocol based on Alternating
Trilinear Forms, a known TI-complete problem, was proposed to accomplish this goal [Tan+22]. Understanding
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the difficulty within the TI-complexity class gives us clues as to whether TI-complete problems can stand the
test of time as a secure Cryptographic Protocol.

In Quantum Information, UTS QSI maintains an interest in this area of research. Quantum Information is
the area of study trying to understand information-theoretic problems through the lens of non-classical quantum
physics. It is crucial to many industries, such as finance, for its potential use in efficiently solving challenging
optimisation problems. However, this is still a field in the early stages of development. Quantum Information, by
being Quantum mathematically, is modelled as Tensor Products within Hilbert Spaces, and a classic question
asks if there is a relation of quantum states under stochastic local operations and classical communications
(SLOCC) [Ben+01]. However, this can be precisely modelled as a problem of Tensor Isomorphism[DVC00].

In Computational Group Theory, the problem of TI-completeness and p-group isomorphism for class 2
and exponent p groups is fundamentally essential to developing more efficient algorithms within Computational
Algebra Software such as MAGMA and GAP. These tools are used industry-wide by researchers in domains such
as Chemistry, where they ask if two chemical molecular structures are equivalent under symmetry (equivalent
to a group acting on a structure sharing the same orbit).

In Machine Learning, there are two domains in which isomorphism problems are fundamentally important.
In feature extraction, we can use tensor isomorphism to extract the signature tensor from a machine-learning
model [PSS19; Che57]. Feature extraction is used in cancer cell detection. As such, cancer researchers are
primary stakeholders to feature extraction improvements. Additionally, Graph Neural Networks proliferate in
computer vision through object detection and motion-tracking applications. The basis of these networks has
been shown to be equivalent to the famous Weisfeiler-Leman technique described in the history section [Xu+19].

5.3 Innovation within the Proposed Project
In completing this research, we would have improved upon a 40-year-long bottleneck in showing that Group
Isomorphism Testing can be done in No(logN) time.

We hope to set the status quo based on Sun's techniques. We do not believe our current algorithms are the
fastest they can be, and given new techniques, we think we can improve these algorithms further.

The innovation is not singly in creating faster and more efficient algorithms. The most significant potential
contribution to this project would be showing that the 2-groups of class 2 and exponent p are solvable in
time No(logN). The even groups are thought to compose most p-groups of class 2 and exponent p despite p
representing a prime power. This is a big feat and would allow us to show that all cases of p-groups of class 2
and exponent p are little-o quasipolynomial time bounded.

Solving all p-groups is essential in understanding the complexity of isomorphism testing problems. It has
the potential to propagate through every isomorphism problem and improve our current understanding of each
problem so that we may develop new techniques for optimising problems in machine learning and quantum
information. As well as understanding new potential threats to cryptosystems based on alternating trilinear
form equivalence.

6 Research Methods
6.1 Research Methods Related to Pure Mathematics
This research is within the space of the categorisation and complexity analysis of intractable problems. Here,
we only care about the worst case.

In undertaking the research, we attempt to prove mathematically certain properties of algorithms. As such,
we borrow numerous methodologies from the research of computational complexity.

In undertaking literature reviews, we seek to understand what makes techniques proposed in papers so
powerful. This is important to gain a conceptual understanding of the problem and verify the accuracy of the
information. Here, we will try to understand new techniques proposed and find potential ways to build upon
and improve upon such techniques.

In developing new mathematical methods, we seek to identify mathematical areas in which we can introduce
new results. Each new theorem or lemma must be verified with proof showing that the assumption is true based
on formal logic. An expert, such as a fellow researcher in the same domain or a supervisor, should verify each
proof. Methods of presenting new proofs could be presentations and written reports with accompanying proofs.

In optimising mathematical results, we attempt to find flaws in current known mathematical results and
add improvements. The methodology is the same as developing a new method however, it is based on prior
knowledge where new methods are original results.

In developing results, we will use mainly techniques taken from linear and abstract algebra, which is the
study of linear and abstract algebraic structures. Here, we concern ourselves with finite structures. As such,
we borrow knowledge from representation theory, a developed theory that asks how abstract structures can be
represented as linear structures. Any new knowledge that contributes to the field of representation theory is
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considered progress. As such, we can measure progress by describing new lemmas and theorems produced while
also accounting for their importance within the current literature to which they apply.

In developing results, we also heavily utilise the probabilistic method, which is a non-constructive proof
technique that shows that objects exist bound by specific structure given that there is a non-zero constant
probability of them existing within a set. In general, probabilistic proofs yield a range of potential improvements,
such as optimising the bounds (which means we find a better probability of something existing). This works
well with the above group and linear theoretic techniques and allows us to prove with certainty that structures
may exist.

6.2 Research Methods to Algorithm Analysis and Computational Complexity
In Computational Complexity, we utilise asymptotic analysis for the worst-case by asking the question, how
many steps does this algorithm take asymptotically on a deterministic Turing machine with respect to a given
input? Here, we try to find lower asymptotic bounds. We need to provide both a proof of correctness, which
says that for every input string w, the Turing machine will halt on the correct solution to the problem. We also
need a proof of time-bounds, which is the analysis of how many steps it takes to compute the answer to the
problem on a deterministic single-tape Turing machine. Our criteria for success is if the algorithm has a lower
asymptotic running time in the worst case than the last.

It is also important to show that specific problems are in a particular complexity class. As such, it is essential
to use the appropriate reduction for the complexity class. For example, for a reduction to a TI-complete problem,
we must show that a given problem is polynomial time Turing reducible to Tensor Isomorphism. Here, we have
specific criteria in order to constitute a successful reduction. The reduction most often needs to be a computable
function, which is a function that runs on a Turing Machine and halts on the image of the function for every
pre-image.

In most cases, the reduction will need to query an Oracle Turing machine, but the amount of queries
defines the difference between Karp and Turing reductions. We also say that for standard reductions, we want
∀w ∈ L ⇔ f(w) ∈ L′, or our function is surjective. Other criteria usually depend on the type of reduction.
Such as FPT reductions for the FPT complexity class or polynomial time reductions to show an algorithm is
in P or NP-complete. A reduction is a critical research methodology as it classifies the difficulty of a problem.
The introduction of new appropriate reductions verified by a proof of correctness is considered good progress in
research in computational complexity.

6.3 On the Collection of Data and Evaluation Metrics
It should be noted that usually, we cannot simply classify research in Computational Complexity as qualitative
or quantitative. Qualitative implies the collection of experimental and statistical data. In contrast, Qualitative
describes the collection of data that is up to interpretation and evaluated based on non-numerical and subjective
measures.

The results obtained within the project have the property that, once verified, they should not be up to
interpretation. They should be verified formally. Of course, there is potential for mistakes. However, the results
are not experimental. In the same vein, in contrast to qualitative data, we do not want our data to be up
to interpretation. With this understanding, the data collected from Computational Complexity research is an
equal mix of qualitative and quantitative metrics. In quantitative, we want to evaluate a result based on a
numerical answer without interpretation. Our qualitative aspect is evaluating formal arguments in logic and
making connections between an abstract representation and broader concepts.

The type of data collected will be a repository of lemmas and corresponding proofs utilising the techniques
mentioned previously. Each proof can be verified as correct or incorrect and may be compared based on select
criteria. Such as does the proof introduce new original knowledge to the current landscape. Does the proof
obtain tighter bounds than a previous result, or does the proof generalise more objects than a previous result?

Specifically, we hope to obtain a faster algorithm in deterministic worst-case for the class of TI-complete
problems, which we can compare with the current status quo.

6.4 The Proposed Research Structure
In undertaking our research, we want a fixed research design to improve the algorithm for testing isomorphism
in p-groups of class 2 exponent p. However, we may want a more flexible research design in which we can explore
the implications to other TI-complete problems.

In doing so, we need to understand the techniques proposed in the algorithm by conducting literature reviews
and undertaking presentation-style research activities. We must also create a body of Lemmas, Theorems and
accompanying proofs. Synthesising a faster algorithm for p-groups of class 2 exponent p is feasible within the
project period.
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However, developing new techniques based on the Weisfeiler-Leman Algorithm, a significant component of
Sun's paper is a broad and flexible research goal. After developing a faster algorithm for the case of p groups
of class 2 exponent p, exploring the implications, either through directly applying new techniques or through a
method of TI-complete reductions and analysis, is the more exciting aspect of the project contained within the
project proposal.

7 Conclusion
Algebraic Isomorphism Testing is arguably at the forefront of mathematical and theoretical computer science.
It has developed into one of the most intriguing areas that puzzle mathematicians and computer scientists alike.

Establishing faster deterministic worst-case algorithms for testing TI-complete problems gives us new in-
formation on how to develop algorithms in the practical sense. TI-complete algorithms have classically been a
challenging class of problems to solve.

This report describes the TI-complete problems as significant for broadening the potential post-quantum
cryptography schemes available to us in a world dominated by lattice-based schemes. It also mentions the
importance of the result as a widely studied theoretical problem.

This report describes the very long and significant historical connection and correlation between the isomor-
phism testing of (multi)linear structures and the isomorphism testing of graphs. The graph-based formulation of
the problem hopes to utilise results obtained in understanding the complexity of general algebraic isomorphism
described as group actions to improve results within its research domain.

In understanding the overall depiction of isomorphism testing as a problem and how it can be understood
as a single open question in research. The report proposes a new project in which we attempt to improve
the known worst-case time complexity status quo for isomorphism testing. We describe the methodology and
also describe how, when understanding TI-complete problems as a homogeneous class of problems given by
polynomial-time Turing reductions, we can understand that any faster result obtained for p-group of class 2
exponent p isomorphism testing can be extended to the other isomorphism testing problems. This is a result
demonstrated in the following paper [GQ23a]. As such, it is not unreasonable or infeasible to think of this
project's scope as both significant and reasonable within a year.
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