More NP-complete Problems and Dealing with Intractability

Euan Mendoza

2023

1 Intractability and NP-completeness

In the study of the theory of computing there are some fundamental goals we set out to achieve. One of the first
goals was to ask are decision problems decidable. This let’s us know if we can write an algorithm that solves
a problem. However, in practice knowing if there exists an answer or not is not useful unless we can find the
answer before the heat death of the universe.

This is the primary motivation for the notion of intractable problems. A problem is thought to be intractable
if it cannot be solved in a reasonable amount of time. What constitutes a reasonable amount of time can be seen
as the primary motivation for the complexity classes P and NP, as well as the motivation for the complexity
class NP-complete.

Before describing P vs NP, it is important to revisit the notion of determinism vs non-determinism. We
found out that for finite state automata, non-determinism is equivalently as powerful as determinism. We
also found out that deterministic context free grammers are not as powerful as non-deterministic context free
languages. So it was surprising to find out that all deterministic turing machines are equivalently as powerful
as non-deterministic turing machines in terms of computability. However, this is not the complete picture. We
also want to know if problems that can be solved efficiently on non-deterministic turing machines can also be
solved efficiently on deterministic turing machines.

Definition 1.1. The complexity class P is the class of decision problems that are decidable in polynomial time
(O(n*)), on a deterministic single-tape turing machine.

Definition 1.2. The complexity class NP is the class of decision problems that are decidable in polynomial
time (O(n*)), on a non-deterministic single-tape turing machine.

We can now see clearly that the question of P vs NP is really a question of determinism vs non-determinism.
There is also the equivalent definition of NP as the class of problems that can be verified in polynomial time
on a deterministic turing machine, which can be found in sipser.

Quite often we say an algorithm is efficient if it is in P. One of the biggest open questions in computer
science that we are now (almost) equipped to tackle is this problem of P vs NP.

1.1 Aside: Proving Languages are in NP

When I started in computer science one of my absolute favourite concepts was the notion of a non-deterministic
turing machine. The notion of non-determinism in turing machines is also fundamental in proving that a
language is in NP.

One of the most magical parts of a non-deterministic turing machine is it acts like a normal turing machine
augmented with a step usually referred to as guess or find which can search for a solution to a problem
non-deterministically in polynomial time. How this actually works can be left as an excercise to the reader.
Nevertheless the step can be described as a peak into the future and finding an answer.

As a general strategy for proving a language is in NP we need to think about the notion of verify. Usually
we follow the general framework of non-deterministically guess a possible answer and verify it in polynomial
time.

Recall that a Graphlsomorphism Graphlso = {(G, H) | 3¢, #(G) = H}. This is the language that given two
graphs, accepts if there is a phi ¢ function that maps all the vertices of G to H and preserves the edge relations.
This has a corresponding non-deterministic algorithm.

Lemma 1.1. Graphlso is in NP.

Proof. Consider the following algorithm.
Clearly the guess step is polynomial time bounded, the second step corresponds to the definition of the
language. If ¢ is an isomorphic function, and ¢(G) = H, than by definition of Graphlso, the inputs are in the



Input: G, H are graphs
Output: Accept or Reject

1. guess non-deterministically a isomorphic function ¢
2. if (G) = H, return Accept

3. else return Reject

language, while if there is no ¢, than step 1 would not be able to find the function and the algorithm would
reject.
|

This general framework of first showing that you can guess an answer non-deterministically, and than verify
that the answer is in the language defined is how we prove problems are in NP.

1.2 Polynomial (Karp) Reductions and the Definition of NP-complete

NP-complete is often cast as a problem of intractability but theoretically (I think) it is really a question of
determinism and non-determinism. A open question is P = NP? How would we go about proving that P = NP.
We first need to describe reducibility amongst problems.

We have already seen that we can reduce a problem to another problem by finding a computable function
that changes the inputs of a turing machine from a turing machine that decides one language to a turing machine
that decides another. Formally,

Definition 1.3. Let A, and B be decision problems (or languages decided by turing machines). A is mapping
reducible to B denoted A <,, B if and only if there exists a computable function f such that for every

weA <= f(w)eB

and the function f is called a reduction from A to B.

This has a useful property that if there is a turing machine M that can decide B there is a turing machine
N that can decide A given by N = fo M. Or simply we can find an algorithm that decides problem A by using
the algorithm that decides problem B and changing the inputs to the inputs of problem A.

We have to ask out of curiousity, is this really that helpful for proving P = NP? Not really because this
doesn’t tell us anything about the complexity class NP. We need to first define the notion of a polynomial time
(karp) reduction.

Definition 1.4. Let A and B be decision problems (or languages decided by a turing machine). A is polynomial
time reducible to B denoted A <p B if and only if there exists a polynomial time computable function f such
that for every input string w of A

weA <= f(w)eB

and the function f is called a polynomial-time reduction from A to B.

This seems similar to the definition of mapping reduction, however now we know that if f takes a polynomial
amount of steps, than clearly if a problem B is in NP and A is reducible to B than A must also be in NP by
chaging the inputs for A to the inputs of B. It is also important to note that a polynomial time reduction can
be used to describe the degree of difficulty of a problem. Clearly B is harder than A if A is polynomial time
reducible to B since if we can solve B we can also solve A.

It is also important to note that when giving a polynomial time reduction it is not sufficient to only give the
algorithm. You must also provide a proof that the reduction is correct, or that for every input of a problem B
it changes the input to a problem B and vice versa. You also must provide a worst-case analysis of the running
time.

From here we can describe the notion of NP-hard and NP-complete. NP-hard can be seen as atleast as hard
as every problem in NP, and NP-complete is the hardest problems in NP.

Definition 1.5. A problem B is said to be NP-hard if and only if for every problem A in NP, A is polynomial
time reducible to B. A problem is NP-complete if it is NP-hard and in NP.

This definition has two important consequences.



1. If a problem in NP-complete can be solved in polynomial time, than P = NP.

2. If a A problem is known to be NP-complete and another problem B is in NP and A is polynomial time
reducible to B, than B must also be NP-complete.

We now have a framework to both describe how to come up with the hardest problems in NP and to prove
that P = NP.

2 First NP-complete problems

If we know some NP-complete problems, than finding others is easy since we can just reduce a known NP-
complete problem to the new problem. So how would we find our first NP-complete problem.

Theorem 1 (Cook-Levin). SAT is NP-complete

Cook and Levin proved that SAT can be reduced in polynomial time to every problem in NP. This is a
foundational problem in theoretical computer science. It allows us to find other NP-complete problems simply
by reduction.

From SAT, the following problems are known to be NP-complete.

Theorem 2. 3-SAT is polynomial time reducible to SAT (as proved last week), so in this week’s tutorial we
show that the following problems are also NP-complete.

1. Independant Set, decide if there exists a size k subset of the vertices of a graph G such that no two vertices
are adjacent (Reduction given in lecture).

2. Hamiltonian Path, decide if there exists a path in a graph G such that each vertez is visited once. (Reduction
given in lecture).

8. Subset Sum, decide if there exists a subset of a set of integers such that they sum to some input value N.
(Reduction in lecture).

4. Vertex Cover, decide if there exists a subset of the vertices of a graph G such that each vertex is connected
to each edge in G. (Reduction from last weeks tutorial).

3 Additional helpful notes

3.1 Space Complexity
3.2 Other Complexity Classes and the Polynomial Time Hierarchy
3.3 Different Types of Reductions

3.4 How to Handle Intractability
1. Talk about the complexity class co-NP.

2. Talk about P-space.
Talk about Karp and Turing reductions.

Space Complexity.

orol W

Dealing with intractability (use Luke’s slides).



	Intractability and NP-completeness
	Aside: Proving Languages are in NP
	Polynomial (Karp) Reductions and the Definition of NP-complete

	First NP-complete problems
	Additional helpful notes
	Space Complexity
	Other Complexity Classes and the Polynomial Time Hierarchy
	Different Types of Reductions
	How to Handle Intractability


